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INTRODUCTION

Gonadal function in mammals is controlled by the dual action of the
pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulat-
ing hormone (FSH). Both synthesis and secretion of LH and FSH are
regulated by gonadotropin releasing hormone (GnRH). GnRH is secreted
by the hypothalamus in a pulsatile manner (1, 2) and this intermittent
pattern of GnRH stimulation is essential for the maintenance of gonad-
otropin synthesis and secretion (3, 4). LH and FSH consist of a common
alpha and different beta subunits (5) which are encoded by three separate
genes (6). Both hormones are secreted by the same pituitary gonadotrope
cells and the differential regulation of LH and FSH secretion appears to
be effected by variations in the pattern of the GnRH pulse stimulus,
together with the direct effects of gonadal steroids and peptides on the
gonadotrope cell.
The pattern of pulsatile GnRH secretion varies during reproductive

life (7-13) and is regulated in part by the feedback actions of gonadal
steroids. Testosterone in men, and estradiol and progesterone together
in women slow the frequency of GnRH secretion by an action which
involves hypothalamic opioid peptides. In children, GnRH secretion
occurs at a low amplitude and slow frequency and both amplitude and
frequency increase during pubertal maturation. In adult men, GnRH
secretion appears to be invarying with pulses of GnRH occurring ap-
proximately every two hours. In women, the pattern of GnRH pulses
changes during the ovulatory menstrual cycle, with pulse frequency
gradually increasing during the follicular phase and amplitude also being
increased during the mid-cycle ovulatory LH and FSH surge. Following
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ovulation, pulse frequency slows due to the feedback effect of estradiol
and progesterone from the corpus luteum.
Thus, the overall regulation of mammalian reproduction results from

a complex feedback system involving regulation of the pattern of hypo-
thalamic GnRH secretion by gonadal hormones. Gonadal steroids can
also modify gonadotrope responses to GnRH. Testosterone generally
reduces LH responses and estradiol has a biphasic effect with initial
inhibition, and subsequent enhancement of LH responses to GnRH.
Gonadal peptides such as inhibin, activin and follistatin can exert direct
actions on the gonadotrope to reduce (inhibin) or enhance FSH secretion.
The interplay of these feedback mechanisms at both the hypothalamus
and pituitary level effects differential synthesis and secretion of the two
gonadotropins. This in turn allows orderly delivery of FSH and LH to
effect follicular development and steroid secretion in the ovary and
spermatogenesis and steroid secretion in the testes.

In this review we examine the role of the ability to change GnRH
pulsatile secretion in regulating gonadotropin synthesis and secretion
and subsequent gonadal responsiveness. First, we discuss GnRH regula-
tion of gonadotropin subunit gene expression. Subsequently, we explore
the changes in pulsatile GnRH secretion which occur during sexual
maturation and during normal ovulatory cycles. We also examine abnor-
malities of GnRH secretion which are seen in anovulatory conditions,
such as hypothalamic amenorrhea, hyperprolactinemia or the polycystic
ovary syndrome.

REGULATION OF GONADOTROPIN SUBUNIT GENE
EXPRESSION

Gonadotropin subunit mRNA expression during the rat estrous cycle

In cycling female rats, plasma LH and FSH are low except during the
preovulatory surge on the afternoon of proestrus (14). In contrast,
changes in gonadotropin mRNA concentrations occur on different days
of the cycle (15, 16). On the morning of metestrus only FSH beta mRNA
is increased. On the following day (diestrus) both alpha and LH beta
mRNAs are increased while FSH beta remains unchanged. On proestrus,
LH beta mRNA increases prior to the preovulatory rise in LH and FSH
beta mRNA is also increased beginning at the time of the rise in serum
FSH. Alpha mRNA concentrations were unchanged during the gonado-
tropin surges. These observations of steady state mRNA concentration
are supported by measurements of subunit gene transcription rates.
These studies showed that alpha subunit transcription did not change
throughout the cycle, while LH beta and FSH beta transcription rates
were highest on the afternoons of proestrus and estrus respectively (17).
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Thus, during the estrous cycle, the subunit genes are expressed both
coordinately and differentially, but the exact mechanisms effecting these
changes remain uncertain. The pattern of pulsatile GnRH secretion
changes during the cycle, with both amplitude and frequency being
increased on proestrus (18-19). The amplitude of GnRH pulses is known
to regulate mRNA expression in female rates (20) and secretion of LH
and FSH can be altered by changes in circulating estradiol (E2) and
progesterone (P) during the cycle. Thus, changes in GnRH pulse pattern,
perhaps modified by the actions of E2 and P on the gonadotrope may act
to differentially regulate subunit gene expression. In particular, inhibin
can inhibit FSH release and reduce FSH beta mRNA concentrations in
vitro and in vivo (21-23) and plasma inhibin levels show a generally
inverse relationship to plasma FSH and FSH beta subunit mRNA
concentrations (24).

The role of gonadal steroids and peptides in regulating gonadotropin
subunit gene expression

Following gonadectomy, both serum gonadotropins and all three sub-
units mRNAs increase, but the timing and the magnitude of the changes
differ, both between subunits and between the sexes (25-28). In females,
serum LH, alpha and LH beta mRNAs do not increase until several days
after ovariectomy, while FSH beta mRNA rises within a few hours. In
males, both alpha and LH beta mRNA increase within 24 hours of
castration and continue to increase over the subsequent four weeks. FSH
beta mRNA also increases, but plateaus after seven days (29).

In female rats, replacement with estradiol at the time of ovariectomy
prevents the increase in LH beta mRNA. The rise in alpha mRNA
persists however, and the increase in FSH beta mRNA is only partially
suppressed. Estradiol and progesterone together produce similar effects,
which are similar to the changes following administration of a GnRH
antagonist to ovariectomized rats (30). Thus, the increase in FSH beta
mRNA after ovariectomy occurs in the absence of GnRH stimulation of
the gonadotrope. Recent data have shown that the rapid increase in FSH
beta mRNA reflects the loss of ovarian inhibin, by actions which appear
to involve stabilization of the FSH beta message (31). In male rats,
replacement of testosterone at castration prevents the increase in all
three subunit mRNAs, in similar manner to the effects of a GnRH
antagonist (32). This suggests that the increase in subunit mRNAs
reflects increasing GnRH secretion, though testosterone may also exert
direct effects on FSH beta mRNA stability (33). Administration of
testosterone to castrate males treated with a GnRH antagonist increased
FSH beta mRNA two-fold and prolonged the disappearance time of FSH
beta mRNA from cytoplasm by a factor of two (34).
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These data suggest that estradiol and progesterone in females and
testosterone in males act to reduce the increase in GnRH secretion which
occurs after gonadectomy (35, 36). Both E2 and P in females and testos-
terone in males also appear to selectively increase FSH beta mRNA
concentrations, which does not appear to involve a change in transcrip-
tion rate and suggests an action effected by stabilization of the FSH beta
mRNA message (34, 37). Inhibin appears to exert an opposite effect,
rapidly reducing FSH beta mRNA concentrations (38, 39). Present data
are incomplete, but this action appears to be mediated by reducing the
stability of FSH beta mRNA. Activin and follistatin are peptides which
were first identified in the gonads but which are also present in the
pituitary. Both peptides increase FSH beta mRNA concentrations by
actions which appear to involve stabilization of the FSH beta mRNA
(38).

Regulation of subunit gene expression by GnRH pulses
As noted above, a pulsatile GnRH stimulus is essential to maintain

gonadotropin secretion and LH and FSH secretion falls in the presence
of a continuous GnRH stimulus-desensitization of the gonadotrope (3,
40). After desensitization, alpha mRNA is increased while LH beta
mRNA is decreased (41, 42), and a pulsatile stimulus is known to be
required to stimulate beta subunit transcription (43). GnRH antagonists
reduce both transcription and steady state concentrations of subunit
mRNAs (44), which emphasizes the role of GnRH and also the impor-
tance of an intermittent GnRH signal.
We have investigated the role of GnRH pulse pattern in male rats by

administering exogenous GnRH to a relatively GnRH deficient rat model.
Castrate male rats received testosterone replacement by implants, which
reduces endogenous GnRH secretion to a low or undetectable level (40,
45). Similar data are lacking in females due to the absence of an
equivalent female model and hence the data below were obtained during
studies in males.

Effects of GnRH pulse amplitude
In castrate rats, GnRH pulses occur every 30 minutes and we have

administered different amplitudes (1-250 ng/pulse) of GnRH at a fre-
quency of one pulse every 30 minutes. All amplitudes of GnRH pulses
increased both alpha and FSH beta mRNAs. In contrast, both LH beta
mRNA and LH secretion showed an amplitude optimum, with 25 ng
pulses producing the highest response. Thus, the changes in the ampli-
tude of the GnRH pulse can effect differential expression of the three
subunit mRNAs (46-48).
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These studies also indicated differences in the time course of subunit
mRNA responses to GnRH pulses. FSH beta mRNA increased within 4-
12 hours, alpha mRNA by 12 hours, while LH beta mRNA did not show
a measurable increase until after 24 hours of GnRH pulses.

Effects of GnRH pulse frequency

The effects of a constant pulse amplitude (25 ng) given at different
pulse intervals (8-480 minutes) were also examined in the same male rat
model. Pulses faster than occur in normal physiology (every 8 minutes),
increased alpha mRNA and to a lesser degree LH beta mRNA. Pulses
given every thirty minutes (the frequency present in castrate rats)
increased all three subunit mRNA concentrations, whereas slower fre-
quency pulses only maintained expression of FSH beta mRNA (49-51).
These effects appear to be exerted at the level of gene transcription (52),
with fast frequency pulses increasing alpha transcription rates, slow
frequency pulses increasing FSH beta transcription, while LH beta
transcription rate was only increased by 30 minute pulses.
These data suggest that changes in both the amplitude and frequency

of the GnRH pulses stimulus can effect differential expression of the
gonadotropin subunit genes which appear to be exerted at the level of
transcription. The data also suggest that the observed physiologic
changes in pulsatile GnRH secretion seen during pubertal maturation
and during ovulatory cycles may be one of the mechanisms involved in
effecting differential synthesis and secretion of the two pituitary gona-
dotropic hormones (53).

PULSATILE GnRH SECRETION IN HUMAN SUBJECTS

Pubertal maturation

In prepubertal girls and boys, LH (by inference GnRH) pulse amplitude
is very low and observed pulses occur at a slow frequency of approximately
every 3-4 hours (9, 10, 54-56). A minor augmentation of pulse amplitude
is seen with the onset of sleep before puberty, and a marked amplification
of both the amplitude and frequency of pulsatile GnRH secretion heralds
the onset of pubertal maturation. Initially, GnRH pulses increase with
the onset of sleep and frequency increases to approximately one pulse
per hour. Over time, this enhanced GnRH pulsatility continues for a
longer duration and in adults persists throughout 24 hours. In boys, the
consequent increase in FSH and LH stimulates testosterone secretion.
This exerts an inhibitory effect on pulse frequency so that in adult men,
pulses occur approximately every two hours. In girls, fewer data are
available, but it is suggested that the increase in estradiol alone does not
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slow the frequency of GnRH pulses. This continuing GnRH stimulation
results in gonadotrope stimulation of the ovary and waves of incomplete
follicular development. Estradiol also augments LH responsiveness to
GnRH and may result in LH surges during anovulatory cycles. Subse-
quent luteinization of maturing follicles and secretion of progesterone
may effect the slowing of GnRH secretion which is seen during estab-
lished ovulatory cycles.
During the process of pubertal maturation, the patterns of gonadotro-

pin responsiveness to exogenous GnRH also change. Before puberty,
particularly in girls, the predominant response is one of FSH secretion,
while after puberty LH responses exceed those of FSH. This supports
the suggestion that the development of a continuing rapid frequency
GnRH pulse stimulus favors expression of the LH beta gene and LH
secretion.

GnRH secretion during ovulatory menstrual cycles

During the follicular phase of an ovulatory cycle, the initial monotropic
increase of plasma FSH declines and plasma LH gradually increases to
a peak at the mid-cycle LH surge. The initial increase in FSH stimulates
follicular recruitment and maturation and the consequent secretion of
estradiol selectively inhibits FSH release and may maintain (or stimu-
late) a rapid GnRH pulse frequency during the late follicular phase (7,
11, 13, 57-58). The persistent rapid GnRH stimulus increases plasma
LH, which further stimulates estradiol secretion and the positive feed-
back of estradiol enhances LH responsiveness to produce the mid-cycle
LH surge (59-61). GnRH pulse frequency increases from one pulse every
90-100 minutes in the early follicular phase to a frequency of approxi-
mately one pulse per hour during the late follicular phase and during the
ovulatory surge. Studies in primates have shown continuing pulsatile LH
secretion during the surge with LH pulse amplitude increasing on the
ascending, and decreasing on the descending portion of the LH surge.
Direct measurements of GnRH in hypothalamic-portal blood of sheep
after administration of estradiol has shown an increase in GnRH pulse
frequency and amplitude (62). During the LH surge itself GnRH levels
appear to be consistently elevated and remain elevated as plasma LH
declines (63). This suggests that the frequency of GnRH pulse secretion
has become very rapid, or is even continuous, which results in desensi-
tization of LH secretion, perhaps the mechanism of termination of the
LH surge. After ovulation, luteinization of the ruptured follicle results in
progesterone secretion which together with estradiol acts at the hypotha-
lamic level to increase opioid activity, which in turn reduces the frequency
of GnRH pulses. In the first few days after ovulation pulses occur every

36



THE REGULATOR OF HUMAN REPRODUCTION

60-90 minutes, but progressively slow to a frequency of every 3-5 hours
by the mid-luteal phase of the cycle. Evidence that the slowing of GnRH
secretion by estradiol and progesterone is due to enhanced endogenous
opioid activity has been shown in several studies. Administration of
progesterone during the follicular phase slows GnRH pulses (64), and
blockade of the opiate receptor by naloxone increases GnRH pulse
frequency during the mid-luteal phase. In line with our earlier studies in
rats, the slow luteal frequency of GnRH pulses would favor FSH synthe-
sis, but release of FSH is inhibited by the combined suppressive effects
of estradiol and inhibin for the corpus luteum. Thus, the pituitary content
of FSH would be expected to increase. In contrast, slow irregular GnRH
pulses would not be optimal for LH synthesis, but as LH release occurs
in response to the irregular GnRH stimulus, pituitary LH stores would
be expected to decline. With the demise of the corpus luteum, serum
estradiol, progesterone and inhibin levels fall in plasma. GnRH pulse
frequency increases and plasma FSH rises due to removal of the inhibi-
tory effects of estradiol and inhibin. This leads to the initial monotropic
increase of FSH, which stimulates follicular maturation in the next cycle.
These observations have been confirmed in several laboratories and

together suggest a consistent pattern of change in pulsatile GnRH
secretion during ovulatory menstrual cycles. The data also suggest,
together with studies in rodents, that the altered GnRH stimulus is
important in differential synthesis and secretion of FSH-which is
essential for orderly follicular maturation and ovulation (53, 65). How-
ever, it should be noted that ovulation can be induced in GnRH deficient
humans or primates by administration of fixed doses of GnRH at fixed
frequencies (66-68). In a majority of these studies a supraphysiologic
dose of exogenous GnRH was used, which may override the need to
change the frequency of the GnRH stimulus. Additionally, most studies
involve one ovulatory cycle and it is uncertain whether the ability to
alter GnRH frequency is important in maintaining ovulatory cycles over
prolonged periods of time. It may be postulated that each monotropic
increase in FSH at the beginning of the follicular phase initiates matu-
ration of follicles destined to ovulate in future cycles, in addition to
stimulating maturation of follicles involved in the present cycle. Some
data to support this view are found in studies which have shown that
administration of rapid pulsatile GnRH during the luteal phase can result
in deficient follicular development and impaired corpus luteum function
in subsequent cycles (69, 70).
The observed changes in GnRH stimulation of the pituitary during the

follicular and luteal phases of an ovulatory cycle may involve similar
mechanisms to those operative during puberty. During the follicular
phase increasing GnRH pulse frequency and amplitude and the reversal
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in plasma gonadotropins, declining FSH and increasing LH, are similar
to the changes observed during pubertal maturation (53).

PULSATILE GnRH SECRETION IN ANOVULATORY
CONDITIONS

Recent studies have shown that several types of reproductive dysfunc-
tion resulting in anovulation and/or amenorrhea appear to be associated
with abnormalities of sequential changes in pulsatile GnRH secretion.
These suggest that the abnormal GnRH stimulus, and particularly an
inability to sequentially change GnRH pulse frequency may be the
underlying abnormality in anovulation in these women.

Hypothalamic amenorrhea

Hypothalamic amenorrhea (HA) is a relatively common disorder which
is a diagnosis made only after exclusion of pituitary and ovarian abnor-
malities. The amenorrhea is commonly preceded by marked weight loss,
strenuous exercise such as competitive running or gymnastics, psycho-
logical stress or on occasion the use of oral contraceptives (71-72). The
disorder is reversible and in many women ovulatory menses resume
within one year of removal of the antecedent conditions. Basal measure-
ments of plasma LH, FSH, prolactin and estradiol show that these are
usually normal or slightly low, and responsiveness to exogenous GnRH
is maintained. Studies in several laboratories have shown that the fre-
quency of GnRH pulse secretion is often markedly reduced in a majority
of women with HA (13, 57, 73). GnRH pulses occur at a slow frequency
(every 3-4 hours) and irregular amplitude, similar to the patterns ob-
served during the luteal phase of a normal cycle. This suggests that
similar mechanisms may be involved in reducing endogenous GnRH
secretion in the two situations. This suggestion is confirmed in some
patients by restoration of pulsatile GnRH secretion within hours after
administration of the opiate receptor blocker naloxone (74-76). In addi-
tion, some reports have indicated that long term administration of the
orally active opiate receptor blocker naltrexone can result in ovulation
when given over periods of several weeks (77). These data indicate that
in a majority of women with HA, the anovulation appears to reflect a
persistent slow frequency GnRH stimulus which is inadequate to increase
LH synthesis and secretion to the level required for an ovulatory LH
surge. It should be noted, however, that a significant number of women
with HA are unresponsive to naloxone (76) and the mechanisms involved
in the disordered GnRH secretion in this group remain unclear.
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Hyperprolactinemia

Anovulation and amenorrhea are commonly associated with an eleva-
tion of serum prolactin in women. In situations where prolactin is
elevated as a result of a prolactinoma, or where the hyperprolactinemia
reflects the use of medications which reduce hypothalamic dopamine
secretion or action, the effects on the reproductive axis appear to be
similar. Studies of pulsatile LH secretion have revealed slow, irregular
patterns suggesting inhibition of hypothalamic GnRH secretion. Admin-
istration of bromocriptine, a dopamine agonist, reduces prolactin and
restores pulsatile LH secretion to normal (78, 79), which is followed by
resumption of ovulatory cycles. Of interest, some studies suggest that
prolactin reduces GnRH secretion by an action which also involves excess
hypothalamic opioid activity. In hyperprolactinemic women, administra-
tion of naloxone did not lower serum prolactin, but restored a normal
frequency of pulsatile GnRH secretion (80, 81). This suggests that the
elevated prolactin increases hypothalamic opioid activity which in turn
reduces GnRH pulse frequency and prevents the normal increase in pulse
frequency which occurs during the follicular phase of ovulatory cycles.

Polycystic ovarian syndrome

Polycystic ovarian syndrome (PCO) is a relatively common disorder
which is associated with anovulation, hirsutism, multiple cysts in the
ovaries, and obesity. The clinical syndrome may reflect several underlying
causes, but the excess androgen production is essentially of ovarian
origin, and in a majority of women appears to reflect increased LH
secretion (82-84). Administration of a GnRH antagonist rapidly reduces
LH and androgen secretion, indicating a role for LH stimulation of
ovarian steroidgenesis in the excess androgen secretion. Recent studies
have shown that both the frequency and amplitude of LH pulses are
increased in patients with PCO (85, 86). Pulses of LH are secreted
persistently at a frequency of approximately one pulse per hour-similar
to that present during the late follicular phase of an ovulatory cycle. In
such circumstances of persistent pulsatile GnRH secretion, FSH synthe-
sis and secretion will be expected to decline, but LH synthesis and
secretion would increase, with resultant enhanced androgen production
by the ovaries. These latter changes summarize the observed hormonal
abnormalities in women with PCO.

In women with PCO where LH levels are elevated, we have recently
proposed that the underlying abnormality reflects a reduced sensitivity
of the GnRH pulse generator to the actions of estradiol and progesterone
in slowing GnRH secretion. The disorder commonly begins around
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menarche and if a pubertal girl was relatively insensitive to the effects
of low levels of progesterone (present in the anovulatory cycles seen in
the first few months after menarche), slowing of GnRH pulsatile secre-
tion would not occur and the cyclic changes observed in ovulatory cycles
will be absent. Persistent GnRH pulses would favor LH and not FSH
synthesis and secretion and subsequent follicular development would be
impaired. In the absence of follicular luteinization and progesterone
secretion, a rapid GnRH pulse frequency might be maintained, leading
to persistent anovulation and continuing deficiency of progesterone-
removing the signal to slow GnRH pulses.
We have examined this hypothesis by administering mid-luteal con-

centrations of estradiol and progesterone to women with PCO (87).
Administration of E2 and P for 20 days resulted first in a decrease in
GnRH pulse frequency, and a later reduction in LH pulse amplitude.
After discontinuing the E2 and P, GnRH pulse frequency increased with
a selective increase in plasma FSH, LH levels remaining low during the
first week after steroids have been discontinued. As a consequence LH/
FSH ratios returned to unity and administration of exogenous GnRH at
this time showed that LH responses were impaired compared to those of
FSH. Thus reducing the frequency of the GnRH stimulus for 2-3 weeks
may have reduced LH synthesis. The selective increase in FSH after
steroid withdrawal suggests that FSH synthesis was maintained, allowing
selective FSH secretion in response to the increase in GnRH pulse
frequency. The FSH secreted in these circumstances appears to be
bioactive, resulting in follicular maturation in all women and ovulation
in some.
These preliminary data are supportive of the concept that a majority

of women with PCO reflect an abnormality of GnRH secretion from the
hypothalamus. However, further studies are required to determine if
slowing of the GnRH stimulus will allow normalization of the intraovar-
ian milieu, and if selective FSH release after steroid withdrawal will
consistently stimulate ovarian follicular maturation and ovulation.

SUMMARY
The data reviewed in this chapter provide evidence that the pattern of

GnRH secretion appears to be an important factor in regulating gonad-
otropin subunit gene expression, gonadotropin synthesis and hormone
secretion. The data on gonadotropin synthesis were obtained in rodents
and hence, must be interpreted with caution when applied to primates.
Despite this reservation, the data suggest a similarity of regulatory
mechanisms in mammalian species. The data also provide an explanation
for the mechanisms whereby a single gonadotropin-releasing hormone
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can differentially regulate the three gonadotropin genes and allow differ-
ential hormone secretion.

In overall agreement with this view, the observations during pubertal
maturation reveal increasing GnRH pulsatile secretion during puberty
with an evolution from predominant FSH to a predominant LH secretion
by the gonadotropes. In males, the patterns of GnRH secretion appear
to be fairly consistent throughout adult life, but in women cyclic changes
occur which perhaps are important in maintaining cyclic ovulation. It is
proposed that once pubertal maturation has been established, GnRH is
secreted at a relatively fast frequency (one pulse per hour), and an
essential feature of repeated ovulatory cycles is the slowing of this GnRH
stimulus during the luteal phase:-to allow subsequent preferential FSH
release. This slowing of GnRH secretion appears to be effected by
estradiol and progesterone acting to enhance hypothalamic opioid activ-
ity. Similar mechanisms involving increased opioid tone appear to be
causally related to the reduced frequency and irregular GnRH stimulus
seen in hypothalamic amenorrhea and hyperprolactinemia. In contrast,
some forms of polycystic ovarian disease may reflect abnormalities of the
estradiol-progesterone/opioid/GnRH neuron feedback mechanisms, with
failure to establish slowing in the peripubertal anovulatory cycles. The
resulting persistent GnRH stimulus increases LH with consequent effects
of abnormal follicular maturation and enhanced ovarian androgen pro-
duction.

Present data are supportive of these hypotheses, but future studies will
determine whether these views prove to be correct. However, current
data provide strong support for the view that the pattern of GnRH
secretion is a critical factor in the regulation of differential gonadotropin
synthesis and secretion in mammalian species.
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DISCUSSION

Odell, Salt Lake City. Very nice presentation, John. I'm moved to ask whether in
polycystic ovarian disease, you have attempted to use a GnRH antagonist in small doses to
try to just modestly inhibit the GnRH pulsation amplitude.

Marshall: If you administer a GnRH antagonist, Bill, you can very effectively reduce
LH secretion and the excess steroid production over a period of about three weeks. The
problem in trying to gauge dose is that you either shut off the response or you don't. Our
data have suggested a major influence on LH synthesis of GnRH pulse frequency. So even
if small GnRH pulses got through at a rapid frequency, the gonadotrope cell appears to be
able to recognize fast frequency signals and translate them into LH gene expression.

Wilber, Baltimore: Very lovely presentation, John. I have two questions. First, is there
any role of the amplitude of the pulse, vis-a-vis the pulse frequency in gonadotropin
secretory regulation? Second, is it possible in man to relate peripheral GNRH concentra-
tions to hypothalamic events or does GNRH in the periphery derive from noncentral
sources?

Marshall: I'll take the second one first, peripheral GnRH. I think most sources feel these
measurements are not reflecting GnRH, which is secreted centrally. I think most of these
measurements may reflect difficulties with our assays as opposed to true GnRH in plasma.
The first question: yes, the amplitude does. I did not emphasize that today. If you look at
gene expression, at both the transcriptional level and steady state message, the alpha and
the FSH beta gene appear to be expressed as a function of pulse frequency, and are
independent of pulse amplitude. The LH beta gene has a clear amplitude optimum. This is
of interest in that the optimum amplitude, at least in the way we did the studies, is very
similar to the amplitude of endogenous GnRH pulses that are found during the mid-cycle
ovulatory surge. Indeed, the transcription of mRNA does go up markedly just before that
major LH secretory surge.

Kohler, Portland: John, you made a very nice presentation. By the way, you may have
mentioned this, but exogenous opioids certainly don't completely inhibit reproduction since
addicts and users still get pregnant on occasion. What do they do in your system? Do they
suppress the GNRH peaks?

Marshall: Yes. Some of the earliest studies of female heroin addicts showed that many
of those women were anovulatory and/or amenorrheic. The problem was that there were
so many other factors, like weight loss, life styles and such, that the mechanism was never
quite clear. Data in primates, also in humans during some psychiatric addiction studies,
have shown that the opioids do exactly what you would suspect; they shut down the
frequency of GnRH secretion very efficiently.


